MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.

FÍSICA GRACELI DIMENSIONAL.




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




  1 /  = [          ] ω       ψ     [ / ]   / [ / [    ]    .   .



   = [          ] ,     [ ψ        / [  ]    .




 = [          ] ,     [ ψ        / [  ]  .



ψ [ ψ   / [  /    .



ψ  /     / [ ]   . ] 



ψ         [    .



 ψ        []   .


ψ       / [  ]    .






ψ   / [  ] /     .


*   ] /  [ ]] .








    [ ] .


ψ   [  / ]  .










   ] / [  ]  .


ψ         [  ] / ]    .






ψ        [ [ / ]]     





ψ [     [ ]










ψ     [  /  ψ     .



      ]] / ψ   .



Em física, uma equação de continuidade expressa uma lei de conservação de forma matemática, tanto de forma integral como de forma diferencial.

A fórmula geral para uma equação de continuidade é

onde  é qualquer quantidade,  é a velocidade do fluido e s descreve a geração (ou remoção) de . Esta equação pode ser derivada por considerar os fluxos em um compartimento infinitesimal. Esta equação geral deve ser usada para derivar qualquer equação de continuidade, desde uma simples como a equação de continuidade de um volume a complicadas como as equações de Navier-Stokes. Esta equação também generaliza a equação de advecção.

Teoria eletromagnética

[editar | editar código-fonte]

Em teoria eletromagnética, a equação de continuidade vem derivada de duas das equações de Maxwell. Estabelece que a divergência da densidade de corrente é igual ao negativo da derivada da densidade de carga respectiva ao tempo.

A densidade da corrente é o movimento de densidade de carga. A equação da continuidade diz que se a carga se move para fora de um volume diferencial (isto é, a divergência da densidade de corrente é positivo), então a quantidade de carga no interior desse volume vai diminuir, portanto, a taxa de variação da densidade de carga é negativa. Portanto, a equação da continuidade mostra que existe conservação da carga.

Em outras palavras, só poderia haver um fluxo de corrente se a quantidade de carga varia com o passar do tempo, já que está diminuindo ou aumentando em proporção à carga que é usada para alimentar tal corrente.

Esta equação estabelece a conservação da carga.










Comentários

Mensagens populares deste blogue