MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE ANCELMO LUIZ GRACELI [BRASILEIRO].

FÍSICA GRACELI DIMENSIONAL.




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




  1 /  = [          ] ω       ψ     [ / ]   / [/ [    ]    .   .



   = [          ] ,     [ ψ        / [  ]    .




 = [          ] ,     [ ψ        / [ ]  .



ψ [ ψ   / [  /    .



ψ  /     / [ ]  ]. ] 



ψ         [ ]   .



 ψ        []]   .


ψ       / [ ]]    .






ψ   / [  ]] /     .


*   ] /  [ ]]] .








    [ ]] .


ψ   [ ] / ]  .










   ] / [ ]  .


ψ         [ ] ] / ]    .






ψ        [ [] / ]]     





ψ [     [ ] ]










ψ     [ ] /  ψ     .



     ] ]] / ψ   .






Em física, o tempo de Planck, (tP), é a unidade de tempo no sistema de unidades naturais, conhecidas como unidades de Planck. Neste intervalo de tempo a luz viaja, no vácuo, uma distância que define a unidade natural conhecida por comprimento de Planck.[1] A unidade recebe esse nome em referência a Max Planck, o primeiro a propô-la.

O tempo de Planck é definido como:

[2]

onde:

 é a constante de Planck reduzida
G = constante gravitacional
c = velocidade da luz no vácuo
s é a unidade de tempo do sistema internacional, o segundo.

Os dois dígitos entre parênteses denotam o erro padrão do valor estimado.

Tempo de Planck é o tempo passado sobre o Big Bang a partir do qual as implicações da teoria da relatividade geral passaram a ser válidas. Este intervalo de tempo situa-se na ordem dos 10−43 s. Para regressões menores que o tempo de Planck é necessária uma teoria quântica da gravidade para explicar os fenômenos observados. Embora separado do instante inicial por uma fração ínfima de segundo, o Tempo de Planck não se confunde com o momento do Big Bang, porque a matéria energia passou por mudanças dramáticas naqueles pedaços infinitesimais de tempo que se sucedera a ocorrência da explosão inicial, que permitiu a expansão das 3 dimensões espaciais a que estamos acostumados a viver (altura x largura x profundidade) ao longo da 'linha do tempo'.

Comentários

Mensagens populares deste blogue